Fault Detection System in Gas Metering Station Using Neural Network

نویسندگان

  • N. S. Rosli
  • R. Ibrahim
  • Seri Iskandar
چکیده

This research study focuses on the discussion regarding the development of fault detection in gas metering station using an Artificial Neural Network (ANN). The proposed model of fault detection applies ANN approach in order to provide a good detection method for billing purpose. However, one of the main problems faced by gas metering system is the undiagnosed faulty condition of measurement. Moreover, there are many researches regarding the Fault Detection and Diagnosis (FDD) that were conducted to enhance the reliability of the system in the plant process. Therefore, in order to address this issue, fault detection system using neural network is proposed to detect the fault data in the measured readings. The investigation of all faulty instruments was obtained from the detection model which was selected based on the performance of different ANN algorithms. Since, the artificial intelligence, such as neural network is one of the powerful tools in detecting and diagnosing the fault occurred. The ability of the neural networks to learn from the experience or past data has shown a great impact in the fault detection efficiency. Furthermore, such method based on the past data has also been established to improve the accuracy of the fault detection. 

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas Flow Metering Using the PSO Optimized Interval Type- 2 Fuzzy Neural Network

Orifice flow meter is one of the most common devices in industry which is used for measuring the gas flow. This system includes an orifice plate, temperature and pressure transmitters, and a flow computer. The flow computer is used for collecting information related to temperature, pressure, and their differences under various conditions. Also the flow computer can calculate the flow rate of ga...

متن کامل

UAV attitude Sensor Fault Detection Based On Fuzzy Logic and by Neural Network Model Identification

Fault detection has always been important in aviation systems to prevent many accidents. This process is possible in different ways. In this paper, we first identify the longitudinal axis plane model using neural network approach. Then based on the obtained model and using fuzzy logic, the aircraft status sensor fault detection unit was designed. The simulation results show that the fault detec...

متن کامل

Robust Fault Detection on Boiler-turbine Unit Actuators Using Dynamic Neural Networks

Due to the important role of the boiler-turbine units in industries and electricity generation, it is important to diagnose different types of faults in different parts of boiler-turbine system. Different parts of a boiler-turbine system like the sensor or actuator or plant can be affected by various types of faults. In this paper, the effects of the occurrence of faults on the actuators are in...

متن کامل

Detection of Single and Dual Incipient Process Faults Using an Improved Artificial Neural Network

Changes in the physicochemical conditions of process unit, even under control, may lead to what are generically referred to as faults. The cognition of causes is very important, because the system can be diagnosed and fault tolerated. In this article, we discuss and propose an artificial neural network that can detect the incipient and gradual faults either individually or mutually. The mai...

متن کامل

Optimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network

This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015